Effective static and high-frequency viscosities of concentrated suspensions of soft particles.
نویسنده
چکیده
We obtain an analytic expression that allows to determine the static η and high-frequency η(∞) viscosities as function of the volume fraction φ of a concentrated suspension of soft spherical particles in a liquid of viscosity η(0). The particles consist of a hard core of radius a covered by a porous layer of thickness d. Suspensions of hard spheres and homogeneous porous particles are limiting cases of the model. The proposed expression incorporates the results for the intrinsic viscosity obtained on the basis of a cell model [H. Ohshima, Langmuir 26, 6287 (2010)] into a recently obtained relation for the effective viscosity of concentrated colloidal suspensions [C. I. Mendoza and I. Santamaría-Holek, J. Chem. Phys. 130, 044904 (2009); J. Colloid. Interface Sci. 346, 118 (2010)]. In this model, the correlations between the particles due to crowding effects are introduced through an effective volume fraction φ(eff) which is then used as integration variable in a differential effective medium procedure. The final expression is simple, accurate, and allows to collapse all the data in a universal master curve that is independent of the parameters characterizing the system. The only difference between the static and high-frequency cases is that in the later case φ(eff) also incorporates hydrodynamic interactions arising from the so-called relaxation term. We have tested the accuracy of our model comparing with experimental results for spherical polymeric brushes and simulations for the high-frequency viscosity of homogeneous porous particles. In all cases the agreement with the data is extremely good.
منابع مشابه
Rheological properties of suspensions of thermo-responsive poly(N-isopropylacrylamide) microgels undergoing volume phase transition
The rheological properties of suspensions of thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) microgels are investigated in the swollen and collapsed states using oscillatory and long-time creep measurements. In the swollen state with repulsive interparticle interaction, the zero shear viscosity and quasi-plateau modulus are solely governed by the effective volume fraction (φeff) and are ...
متن کاملShear thickening of dense suspensions due to energy dissipation in lubrication layers between particles.
This paper deals with a theoretical study of the shear thickening effects in concentrated suspensions of non-Brownian particles. Our analysis shows that an increase of the shear rate of the suspension flow leads to a decrease of the mean thickness of the gaps between the nearest particles in dense suspensions. In turn, this leads to the growth of energy dissipation in these gaps, which means an...
متن کاملShear viscosity of dilute suspensions of ellipsoidal particles with a lattice Boltzmann method.
The intrinsic viscosities for prolate and oblate spheroidal suspensions in a dilute Newtonian fluid are studied using a three-dimensional lattice Boltzmann method. Through directly calculated viscous dissipation, the minimum and maximum intrinsic viscosities and the period of the tumbling state all agree well with the analytical solution for particles with different aspect ratios. This numerica...
متن کاملDynamics of suspensions of hydrodynamically structured particles: analytic theory and applications to experiments.
We present an easy-to-use analytic toolbox for the calculation of short-time transport properties of concentrated suspensions of spherical colloidal particles with internal hydrodynamic structure, and direct interactions described by a hard-core or soft Hertz pair potential. The considered dynamic properties include self-diffusion and sedimentation coefficients, the wavenumber-dependent diffusi...
متن کاملTemperature-sensitive poly(N-isopropyl-acrylamide) microgel particles: a light scattering study.
We present a light scattering study of aqueous suspensions of microgel particles consisting of poly(N-Isopropyl-Acrylamide) cross-linked gels. The solvent quality for the particles depends on temperature and thus allows tuning of the particle size. The particle synthesis parameters are chosen such that the resulting high surface charge of the particles prevents aggregation even in the maximally...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 135 5 شماره
صفحات -
تاریخ انتشار 2011